First Eigenmode Transmission by High Efficient CSI Estimation for Multiuser Massive MIMO Using Millimeter Wave Bands
نویسندگان
چکیده
Drastic improvements in transmission rate and system capacity are required towards 5th generation mobile communications (5G). One promising approach, utilizing the millimeter wave band for its rich spectrum resources, suffers area coverage shortfalls due to its large propagation loss. Fortunately, massive multiple-input multiple-output (MIMO) can offset this shortfall as well as offer high order spatial multiplexing gain. Multiuser MIMO is also effective in further enhancing system capacity by multiplexing spatially de-correlated users. However, the transmission performance of multiuser MIMO is strongly degraded by channel time variation, which causes inter-user interference since null steering must be performed at the transmitter. This paper first addresses the effectiveness of multiuser massive MIMO transmission that exploits the first eigenmode for each user. In Line-of-Sight (LoS) dominant channel environments, the first eigenmode is chiefly formed by the LoS component, which is highly correlated with user movement. Therefore, the first eigenmode provided by a large antenna array can improve the robustness against the channel time variation. In addition, we propose a simplified beamforming scheme based on high efficient channel state information (CSI) estimation that extracts the LoS component. We also show that this approximate beamforming can achieve throughput performance comparable to that of the rigorous first eigenmode transmission. Our proposed multiuser massive MIMO scheme can open the door for practical millimeter wave communication with enhanced system capacity.
منابع مشابه
Efficient Transmission Schemes for Multiuser MIMO Downlink with Linear Receivers and Partial Channel State Information
Downlink of a multiuser MIMO system is considered, in which the base station (BS) and the user terminals are both equipped with multiple antennas. Efficient transmission schemes based on zero-forcing (ZF) linear receiver processing, eigenmode transmission, and partial channel state information (CSI) at the BS transmitter are proposed. The proposed schemes utilize a handshaking procedure between...
متن کاملCoded CSI Reference Signals for 5G - Exploiting Sparsity of FDD Massive MIMO Radio Channels
Future 5G systems are expected to provide higher performance, partly unleashed by massive MIMO as well as tight cooperation like joint transmission CoMP. For paired and unpaired spectrum below 6 GHz RF-frequency bands, frequency division duplex as well as time division duplex (FDD/TDD) has to be supported. The use of large cooperation areas over several cells together with massive MIMO downlink...
متن کاملMultiuser Millimeter Wave MIMO Channel Estimation with Hybrid Beamforming
This paper focuses on multiuser MIMO channel estimation and data transmission at millimeter wave (mmWave) frequencies. The proposed approach relies on the time-divisionduplex (TDD) protocol and is based on two distinct phases. First of all, the Base Station (BS) sends a suitable probing signal so that all the Mobile Stations (MSs), using a subspace tracking algorithm, can estimate the dominant ...
متن کاملJoint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive MIMO System
This paper proposes a novel approach for designing channel estimation, beamforming and scheduling jointly for wideband massive multiple input multiple output (MIMO) systems. With the proposed approach, we first quantify the maximum number of user equipments (UEs) that can send pilots which may or may not be orthogonal. Specifically, when the channel has a maximum of L multipath taps, and we all...
متن کاملDesign of Orthogonal Uplink Pilot Sequences for TDD Massive MIMO under Pilot Contamination
—Massive MIMO has been acknowledged as a promising technology to counter the demand for higher data capacity for wireless networks in 2020 and beyond. However, each Base Station (BS) requires good enough knowledge of Channel State Information (CSI) on both the uplink and the downlink as massive MIMO relies on spatial multiplexing. In Time Division Duplex (TDD) massive MIMO systems, this CSI is...
متن کامل